It is currently Wed May 24, 2017 11:20 pm



Welcome
Welcome to imhotep's labs

You are currently viewing our boards as a guest, which gives you limited access to view most discussions and access our other features. By joining our free community, you will have access to post topics, communicate privately with other members (PM), respond to polls, upload content, and access many other special features. In addition, registered members also see less advertisements. Registration is fast, simple, and absolutely free, so please, join our community today!


Post new topic Reply to topic  [ 1 post ] 
Author Message
 Post subject: The magnetic Properties of Graphene
PostPosted: Fri Sep 27, 2013 12:49 am 
Offline
Site Admin
User avatar

Joined: Thu Jul 17, 2008 7:51 pm
Posts: 50
Has thanked: 0 time
Have thanks: 7 time
In a report published in Nature Physics, they used graphene, the world's thinnest and strongest material, and made it magnetic.

Graphene is a sheet of carbon atoms arranged in a chicken wire structure. In its pristine state, it exhibits no signs of the conventional magnetism usually associated with such materials as iron or nickel.

Demonstrating its remarkable properties won Manchester researchers the Nobel Prize in Physics in 2010.

This latest research led by Dr Irina Grigorieva and Professor Sir Andre Geim (one of the Nobel prize recipients) could prove crucial to the future of graphene in electronics.

The Manchester researchers took nonmagnetic graphene and then either 'peppered' it with other nonmagnetic atoms like fluorine or removed some carbon atoms from the chicken wire. The empty spaces, called vacancies, and added atoms all turned out to be magnetic, exactly like atoms of, for example, iron.

"It is like minus multiplied by minus gives you plus," says Dr Irina Grigorieva.


The researchers found that, to behave as magnetic atoms, defects must be far away from each other and their concentration should be low. If many defects are added to graphene, they reside too close and cancel each other's magnetism. In the case of vacancies, their high concentration makes graphene disintegrate.

Professor Geim said: "The observed magnetism is tiny, and even the most magnetized graphene samples would not stick to your fridge.

"However, it is important to reach clarity in what is possible for graphene and what is not. The area of magnetism in nonmagnetic materials has previously had many false positives."

"The most likely use of the found phenomenon is in spintronics. Spintronics devices are pervasive, most notably they can be found in computers' hard disks. They function due to coupling of magnetism and electric current.

"Adding this new degree of functionality can prove important for potential applications of graphene in electronics," adds Dr Grigorieva.


Attachments:
warped graphine.jpg
warped graphine.jpg [ 27.02 KiB | Viewed 475 times ]

_________________
Image
http://www.imhotepslab.com Image

please visit the link above to visit the website
Top
 Profile Send private message  
 
 
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 1 post ] 


Who is online

Users browsing this forum: No registered users and 0 guests


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
cron
suspicion-preferred